skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chu, Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generative models transform random noise into images, while their inversion aims to reconstruct structured noise for recovery and editing. This paper addresses two key tasks: (i) inversion and (ii) editing of real images using stochastic equivalents of rectified flow models (e.g., Flux). While Diffusion Models (DMs) dominate the field of generative modeling for images, their inversion suffers from faithfulness and editability challenges due to nonlinear drift and diffusion. Existing DM inversion methods require costly training of additional parameters or test-time optimization of latent variables. Rectified Flows (RFs) offer a promising alternative to DMs, yet their inversion remains underexplored. We propose RF inversion using dynamic optimal control derived via a linear quadratic regulator, and prove that the resulting vector field is equivalent to a rectified stochastic differential equation. We further extend our framework to design a stochastic sampler for Flux. Our method achieves state-of-the-art performance in zero-shot inversion and editing, surpassing prior works in stroke-to-image synthesis and semantic image editing, with large-scale human evaluations confirming user preference. See our project page https://rf-inversion.github.io/ for code and demo. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. The authors propose Reference-Based Modulation (RB-Modulation), a plug-and-play, training-free solution for personalization of diffusion models. Existing training-free methods face challenges in (a) extracting style from reference images without additional style or content text descriptions, (b) avoiding unwanted content leakage from style references, and (c) composing style and content effectively. RB-Modulation addresses these issues using a novel stochastic optimal controller, where a style descriptor encodes the desired attributes through a terminal cost. The induced drift ensures high fidelity to the reference style while adhering to the text prompt. Additionally, the authors introduce a cross-attention-based feature aggregation scheme that decouples content and style from the reference image. With both theoretical justification and empirical validation, RB-Modulation demonstrates precise control of content and style in a training-free manner, while enabling seamless composition—eliminating reliance on external adapters or ControlNets. 
    more » « less
  3. The generalization ability of machine learning models degrades significantly when the test distribution shifts away from the training distribution. We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors. The presence of skewed training priors can often lead to the models overfitting to spurious features. Unlike existing methods, which optimize for either the worst or the average performance over classes or groups, our work is motivated by the need for finer control over the robustness properties of the model. We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model, with the goal of minimizing a distributionally robust loss around a chosen target distribution. These adjustments are computed by solving a constrained optimization problem on a validation set and applied to the model during test time. Our constrained optimization objective is inspired from a natural notion of robustness to controlled distribution shifts. Our method comes with provable guarantees and empirically makes a strong case for distributional robust post-hoc classifiers. An empirical implementation is available at https://github.com/weijiaheng/Drops. 
    more » « less
  4. Abstract The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing. 
    more » « less